Stoichiometry

Outcomes:

- Interpret a balanced chemical equation in terms of moles, mass and volume of gases.
- Solve stoichiometric problems involving: moles, mass, volume, and heat of reaction.

Stoichiometry Introduction

Stoichiometry

- Is the study of the QUANTITATIVE RELATIONS between the AMOUNTS of REACTANTS and PRODUCTS.
- Just like in cooking, the AMOUNTS and PROPORTIONS of ingredients determine the AMOUNT of food you can

Stoichiometry Introduction

Mole Ratios

- Is the RATIO of the number of MOLES of REACTANTS and PRODUCTS in a BALANCED chemical REACTION.
- To get mole ratios, you must ensure that the equation is BALANCED.

Examples:
1.

$$
\begin{gathered}
\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightarrow 2 \mathrm{NH}_{3} \\
1: 3: 2
\end{gathered}
$$

2.

$$
2 \mathrm{KClO}_{3} \rightarrow 2 \mathrm{KCl}+3 \mathrm{O}_{2}
$$

$$
2 i 2 ; i 3
$$

3.

$$
\begin{gathered}
\mathrm{Zn}+2 \mathrm{HCl} \rightarrow \mathrm{ZnCl}_{2}+\mathrm{H}_{2} \\
\mid \quad \vdots 2 \vdots 1
\end{gathered}
$$

The mole ratio shows us the PROPORTIONS of reactants that produce a certain amount of PRODUCTS.

Stoichiometry Introduction

Mole-Mole Stoichiometry:

- Allows ${ }^{\text {K/s }}$ to find the number of MOLES of PRODUCT that will be formed when we are GIVEN the NUMBER of MOLES of a REACTANT (and vice-versa)
- Will also allow us to find the number of moles of one REACTANT NEEDED when we are GIVEN the MOLES of the OTHER REACTANT.
- In other words, if we know the number of MOLES of just one of the REACTANTS or PRODUCTS, we can find the number of MOLES of ALL other SPECIES in the reaction.

Mole-Mole Stoichiometry
Example:

1. How many moles of hydrogen gas are needed to completely react with 2.00 moles of nitrogen gas to produce ammonia?
Step 1: write the balanced equation.

$$
\frac{3 H_{2}}{3}+\frac{1 \mathrm{~N}_{2}}{2 \mathrm{mo}^{2}} \rightarrow 2 \mathrm{NH}_{3}
$$

Step 2: Set up a molar ratio.

- we see that 1 mol of N_{2} reactswith 3 mol of H_{2}.

$$
\frac{3 \operatorname{mol} H_{2}}{\operatorname{lmolN} N_{2}} \text { or } \frac{\mid \operatorname{mol} N_{2}}{3 \operatorname{mol} H_{2}}
$$

Step 3: Set up the equation:

- To solve for the moles H_{2} needed, start with the given $2.00 \mathrm{~mol} \mathrm{~N}_{2}$, Then use the molar ratio that allows the units to cancel.

$$
2.00 \operatorname{motN} \mathrm{~N}_{2} \times \frac{3 \mathrm{molH}_{2}}{1 \mathrm{molN}_{2}}=6 \mathrm{molH} \mathrm{H}_{2}
$$

Mole-Mole Stoichiometry
Example:
2. How many moles of Ammonia are produced when 0.6 mol Nitrogen gas reacts with hydrogen gas.

Step 1: write the balanced equation.

$$
3 \mathrm{H}_{2}+\mathrm{N}_{2} \rightarrow 2 \mathrm{NH}_{3}
$$

Step 2: Set up a molar ratio.

$$
\frac{1 m_{0} / N_{2}}{2 m o l H_{3}} \text { or } \frac{2 \operatorname{molNH}}{3}
$$

Step 3: Set up the equation:

$$
0.6 \operatorname{mot} \mathrm{~N}_{2} \times \frac{2 \operatorname{mol} \mathrm{NH}_{3}}{1 \operatorname{mot} \mathrm{~N}_{2}}=1.2 \mathrm{~mol} \mathrm{NH}
$$

Mole-Mole Stoichiometry
Try this one...
How many moles of Hydrogen gas are produced from the reaction of 3.00 moles of zinc with HCl ?

$$
\begin{aligned}
\frac{1 \mathrm{Zn}}{}+2 \mathrm{HCl} & \rightarrow 1 \mathrm{H}_{2}+\mathrm{ZnCl}_{2} \\
3 \text { mot } \mathrm{Zn} \times \frac{1 \text { mol } \mathrm{Hz}}{1 \text { mot } 2 \pi} & =3 \mathrm{molH}_{2}
\end{aligned}
$$

Mole-Mass Stoichiometry

Moles to Mass Problems

Same idea as mole to mole problems, but we give you moles of one substance, and you need to convert your answer to mass...

Steps:

1. Write the BALANCED EQUATION
2. Write down the MOLES of the GIVEN SUBSTANCE.
3. Multiply by the MOLE RATIO that will CANCEL the given units and leave you with MOLES of what you are LOOKING FOR.
4. Convert the moles to GRAMS (use MOLAR MASS)

Mole-Mass Stoichiometry

Examples:

1. What mass of water is produced when 4 moles of hydrogen gas reacts with excess oxygen? Balanced Equation:

Find moles of water produced:

Convert to grams of water produced:

Mole-Mass Stoichiometry

Examples:

2. What mass of aluminum hydroxide is produced when 1.5 moles of sodium hydroxide reacts with excess aluminum chloride?

Balanced Equation:

Find moles of water produced:

Convert to grams of water produced:

Mole-Mass Stoichiometry

Try these ones...

1. Find the mass of carbon dioxide produced when 2.5 moles of propane $\left(\mathrm{C}_{3} \mathrm{H}_{8}\right)$ react with excess oxygen.

Mole-Mass Stoichiometry

Try these ones...
2. Find the mass of calcium chloride produced when 0.5 moles of magnesium chloride react with excess calcium hydroxide.

Mass-Mass Stoichiometry

Mass-Mass Relationships

- Same idea as mole-mole stoichiometry.
- Given MASS of ONE SPECIES in a reaction, find MASS of ANOTHER SPECIES in the reaction.

Steps:

1. Write the BALANCED EQUATION.
2. CONVERT the given MASS to MOLES
3. Set up a MOLAR RATIO and SOLVE for the REQUIRED MOLES.
4. CONVERT the calculated MOLES to GRAMS.

Mass-Mass Stoichiometry
Example:
Find the mass of ammonia produced when 3.6 g of hydrogen gas reacts with nitrogen gas.

$$
\begin{gathered}
3 \mathrm{H}_{2}+\mathrm{N}_{2} \rightarrow 2 \mathrm{NH}_{3} \\
? .6 \mathrm{~g} \\
3.6 \mathrm{gH}_{2} \times \frac{1 \mathrm{~mol}}{2.02 \mathrm{~g}}=1.78 \mathrm{~mol} \mathrm{H}_{2} \times \frac{2 \mathrm{~mol} \mathrm{NH}_{3}}{3 \mathrm{~mol} \mathrm{H}}=1.19 \mathrm{~mol} \mathrm{NH}_{3} \times \frac{17.03 \mathrm{~g}}{1 \mathrm{~mol}}=20.27 \mathrm{~g} \mathrm{NH} \mathrm{~m}
\end{gathered}
$$

Mass-Mass Stoichiometry
Try this one...
Reactarts \rightarrow Products
How many grams of $\mathrm{Cu}(\mathrm{OH})_{2}$ can be produced from the reaction of 12.7 g of $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}$ reacting with excess NaOH ?

$$
\begin{aligned}
& \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}+2 \mathrm{NaOH} \rightarrow \mathrm{Cu}(\mathrm{OH})_{2}+2 \mathrm{NaNO}_{3} \\
& 12.7 \mathrm{gCu}\left(\mathrm{NO}_{3}\right)_{2} \times \frac{1 \mathrm{~mol}}{187 \mathrm{~g} \mathrm{~g}}=0.068 \mathrm{~mol} \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2} \times \frac{1 \mathrm{~mol} \mathrm{Cu}(\mathrm{OH})_{2}}{1 \mathrm{~mol}(\mathrm{NO} 3)_{2}}=0.068 \mathrm{~mol} \mathrm{Cu}(\mathrm{OH})_{2} \times \frac{97.5^{2} \mathrm{~g}}{1 \mathrm{~mol}} \\
& =6.63 \mathrm{~g} \mathrm{Cu}(\mathrm{OH})
\end{aligned}
$$

Solving any Stoichiometry Problem

 studied, and be asked to state your answer in any of these units:
MOLES

VOLUME
MASS \# OF PARTICLES

To solve any stoichiometry problem, follow these steps:

1. Write the BALANCED reaction.
2. CONVERT the GIVEN units to MOLES (if not already in moles)

3. Set up a MOLAR RATIO, and SOLVE for the moles of the REQUIRED species ALGEBRAICALLY.
4. CONVERT your answer to the UNIT ASKED FOR in the question (moles, grams, liters, particles)

NOTE:

- Ensure all MASSES are in GRAMS (1kg = 1000g)
- Ensure all VOLUMES are in LITRES (1L = 1000 mL)

Solving any Stoichiometry Problem
Examples:

1. Find the volume (@ STP) of ammonia produced when 3.0L of nitrogen gas reacts with hydrogen gas.

$$
\begin{aligned}
& \mathrm{N}_{2}+3 \mathrm{H}_{2} \rightarrow 2 \mathrm{NH}_{3} \\
& 3.0 \mathrm{~L} \mathrm{~N}_{2} \times \frac{1 \mathrm{~mol}}{22.4 \mathrm{~L}}=0.13 \mathrm{molN}_{2} \times \frac{2 \mathrm{ml} \mathrm{NH}}{1 \mathrm{~m}_{3} \mathrm{~N}_{2}}=0.26 \mathrm{~mol} \mathrm{NH} \times \frac{22.4 \mathrm{~L}}{1 \mathrm{~mol}}=6.0 \mathrm{C} \mathrm{NH}_{3}
\end{aligned}
$$

Solving any Stoichiometry Problem
Examples:
2. How many litres of carbon dioxide are produced when 55.0 g of methane $\left(\mathrm{CH}_{4}\right)$ is burned at STR?

$$
\begin{gathered}
\mathrm{CH}_{4}+2 \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O} \\
55 \mathrm{gCH} \times \frac{1 \mathrm{~mol}}{16.04 \mathrm{~g}}=3.43 \mathrm{~mol} \mathrm{CH}_{4} \times \frac{1 \mathrm{molCO}_{2}}{1 \mathrm{molCH}_{4}}=3.43 \mathrm{molCO}_{2} \times \frac{22.4 \mathrm{~L}}{1 \mathrm{~mol}}=76.8 \mathrm{~L} \\
\mathrm{CO}
\end{gathered}
$$

Solving any Stoichiometry Problem

Examples:

3. How many liters of carbon dioxide are produced when 55.0 g of methane $\left(\mathrm{CH}_{4}\right)$ is burned at STP?

Solving any Stoichiometry Problem

Examples:

3. How many liters of carbon dioxide are produced when 55.0 g of methane $\left(\mathrm{CH}_{4}\right)$ is burned at STP?

Solving any Stoichiometry Problem
Try these ones...

1. Find the mass of ammonia produced when 3.0 L of nitrogen gas reacts with excess hydrogen gas at S.T.P.

$$
\begin{gathered}
\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightarrow 2 \mathrm{NH}_{3} \\
3.0 \mathrm{LN} \times \frac{1 \mathrm{~mol}}{22.4 \mathrm{~L}}=0.13 \mathrm{~mol} \mathrm{N2} \times \frac{2 \mathrm{~mol} \mathrm{NH}_{3}}{1 \mathrm{~mol} \mathrm{~N}}=0.26 \mathrm{~mol} \mathrm{NH}+\frac{17.03 \mathrm{~g}}{1 \mathrm{~mol}}=14.56 \mathrm{~g}
\end{gathered}
$$

Solving any Stoichiometry Problem
Try these ones...
2. Given the reaction below, what mass of glucose $\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)$ is needed to make $4.5 \mathrm{~L} \mathrm{CO}_{2}$ gas at STP? (note: the reaction is not balanced)

$$
\begin{gathered}
\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6} \rightarrow 2 \mathrm{C}_{2} \mathrm{H}_{52} \mathrm{OH}+2 \mathrm{CO}_{2} \\
4.5 \mathrm{~L} \mathrm{CO} \\
2
\end{gathered} \frac{1 \mathrm{~mol}}{22.4 \mathrm{~L}}=0.2 \mathrm{~mol} \mathrm{CO}_{2} \times \frac{1 \mathrm{~mol} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}}{2 \mathrm{~mol} \mathrm{CO}}=0.1 \mathrm{~mol} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6} \times \frac{180.12 \mathrm{~g}}{1 \mathrm{~mol}}=18.01 \mathrm{~g}
$$

