Review of SC10F & 20F

The Periodic Table:

1. Atomic Number:

- Number of <u>PROTONS</u> in an <u>ATOM</u> of an <u>ELEMENT</u>.
- 2. Atomic Mass:
 - <u>SUM</u> of the <u>MASS</u> of <u>PROTONS</u> and <u>NEUTRONS</u>
 - Recall:
 - Protons = **POSITIVE**, **1AMU**
 - Electrons = <u>NEGATIVE</u>, <u>OAMU</u>
 - Neutrons = <u>NEUTRAL</u>, <u>1AMU</u>

Example:

How many protons, electrons and neutrons does fluorine have?

The Periodic Table:

- 3. Groups or Families:
 - <u>COLUMNS</u> on the periodic table.
 - the major families are:
 - Column 1 → <u>ALKALI METALS</u>
 - Column 2 → <u>ALKALINE EARTH METALS</u>
 - Column 6 → <u>CHALCOGENS</u>
 - Column 7 → <u>HALOGENS</u>
 - Column 8 → <u>NOBLE (INERT) GASES</u>

The Periodic Table:

4. Metals:

- on the **LEFT** side of the staircase
 - are usually <u>SHINEY</u>, <u>MALLEABLE</u>, <u>CONDUCTIVE</u>, <u>DUCTILE</u>, etc.
- 5. Non-Metals:
 - on the <u>RIGHT</u> side of the staircase
 - are usually <u>DULL</u>, <u>BRITTLE</u>, <u>NON</u>-<u>CONDUCTIVE</u>, <u>NON</u>-<u>DUCTILE</u>.
- 6. Metalloids:
 - On the **STAIRCASE**
 - have properties of both metals and non-metals

1A H 1.008 J.i 6.941	2A 4 8e 9012											3A 5 1081	4A 6 1201	5A 7 N 1401	6A 8 0 1600	7A 9 F 1900	8A He 4003 10 Ne 2018
11 Ma	$\frac{12}{M\sigma}$							88				13	14	15 P	16	17	18
23.00	2431	38	48	5B	6B	7B		-00		1.18	28	26.98	28.09	30.97	32.06	35.45	39.95
19	20	21	22	23	24	.25	26	27	28	29	30	31	32	33	34	35	36
<u>K</u>	Ca	Se	Ti	-Y	Cr	Mn	Pe.	Co	Ni	Cu	Zn	Ga	Ge	AS	<u>-56</u>	Br	Kr
37.10	38	39	40.20	41	42	43	44	45	46	47	48	49	50	51	10.30	53	54
Rb	Sr	Ŷ	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag.	Cd	In	Ś'n	Sb	Te	Ĩ	Xe
85.47	87.62	88.91	91.22	92.91	95.94	(98)	101.1	102.9	106.4	1079	112.4	1148	1187	121.8	1276	126.9	131.3
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
CS 1920	197.2	120.0	1705	18	1020	K8 196.2	100.2	192.2	1051	AU 1970	11g 200.6	2044	P0 207.2	209.0	1200) (200)	AL (210)	<u>KB</u> (222)
87	88	89	104	105	106	107	170.2	109	1391	124.0	200.0	CO-4-4	a v v a	2020	Vena'	10.000	Vece's
Fr	Ra	Ac	Rf	Ha	Unh	Uns		Une									
(223)	226.0	2270	(261)	(262)	(263)	(262)		(267)									
I anthonidae				58	59 D-	60 M4	Dm	62 8 m	63 En	24	- 65 Th	00 De	67 HA	68	67	70 Vh	71
1.414.4144.4144.425				140.1	140.9	1442	(145)	150.4	152.0	157.3	158.9	1625	164.9	167.3	168.9	173.0	175.0
					91	92	93	94	95	96	97	98	99	100	101	102	103
Actinides				Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
				232.0	231.0	2380	237.0	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(260)

Atoms are all charged up!

lons:

- Atoms will gain or lose <u>ELECTRONS</u> to achieve a <u>STABLE OCTET</u> (FULL OUTER SHELL)
- If an atom:

Gains Electrons	Loses Electrons
Becomes more negative	Becomes less negative (more positive)
Negatively charged	Positively charged
Usually non-metals	Usually metals
Ex) sulphur 2 –	Ex) Aluminum 3 t

Another casualty in the War of the Atoms.

Bonding...

a) *Ionic Bonds*

- Result of the <u>TRANSFER</u> of <u>ELECTRONS</u> creating oppositely charged <u>IONS</u>.
- Bonding of a <u>METAL</u> and a <u>NON-METAL</u> (metals
- lose electrons and non metals gain electrons).
- PROPORTIONS of ATOMS are determined by IONIC CHARGES.

Bonding...

b) Covalent Bonds

- Result from the **<u>SHARING</u>** of **<u>ELECTRONS</u>**.
- Bonding of <u>TWO</u> <u>NON-METALS</u> (both want to gain electrons)

Naming... H_2O H_2O_2

We will review all the naming that you did in grade 10, but here's a quick refresher:

Covalent Molecules:

• are named using <u>PREFIXES</u> since we don't have charges to show us how they go together. $(\mu_{4} + O_{2} \rightarrow CO_{2} + \mu_{2})$

SFG

Examples:

CO - Carbon monoxide CO_2 (arbon dioxide) B_2F_3 di Boron tri fluoride Trinitrogen pentoxide N305

sulphur hexafluoride

Naming...

Ionic Molecules:

- We **DON`T USE PREFIXES** since we have **CHARGES** to show us how they go together.
- When writing the formula, we put the <u>CORRECT NUMBER OF IONS</u> together so the charge adds to <u>ZERO</u>.

Examples: Sodium Chloride NaCl Magnesium Chloride MgCl₂ Al2O3 Aluminum oxide Sodium oxide NasO Mg3N2 Magnesium nitride

