Titration Curves...

Outcomes:

- Using a standardized acid, determine the concentration of an unknown base.
- Perform a lab to demonstrate the stoichiometry of a neutralization reaction between a strong acid and base

A <u>TITRATION CURVE</u> is a graph of the <u>pH</u> as a function of the <u>AMOUNT</u> of <u>TITRANT</u> (<u>ACID</u> or <u>BASE</u>) being <u>ADDED</u>.

Titration curves have different shapes based on the **<u>STRENGTH</u>** of the **<u>TITRANT</u>** and **<u>SAMPLE</u>**.

1. Strong Acid-Strong Base Titrations:

In this example, 25.0mL of an HCl solution is titrated with a 0.100M NaOH solution. The equation is:

$$HCI(aq) + NaOH_{(aq)} \rightarrow NaCI_{(aq)} + H_2O_{(l)}$$

At equivalence, $[H_3O^+] = [OH^-]$. The expected titration curve is below:

The equivalence point is found at the center of the steepest portion of the curve.

In this example, the equivalence volume is <u>25.0mL</u> of <u>NaOH</u>. Since the stoichiometry is 1:1...

$$\frac{H(1 + Na0H}{25mL} \rightarrow NaCI + H_{2.0}$$

$$\frac{25mL}{0.1mel}$$

$$0.1mel}{0.1mel} = 0.0025mol \times 1 = 0.0025mol HCl$$

$$\frac{0.025L}{0.025L} = 0.0025mol \times 1 = 0.0025mol HCl$$

 A titration curve of a <u>STRONG BASE</u> with a <u>STRONG ACID</u> would be the <u>SAME</u>, but only <u>REVERSED</u>.

Selecting an Indicator:

- A suitable indicator for a titration should change colour <u>NEAR</u> the <u>EQUIVALENCE</u> <u>POINT</u>.
- Indicators change <u>GRADUALLY</u> over a <u>pH</u> <u>RANGE</u>. Some typical indicators are given in the table below:

Indicator	Colour Change	<u>pH Range</u>
Bromocresol Green	Yellow → Blue	3.6 - 5.2
Methyl Red	Red \rightarrow Yellow	4.8 - 6.0
Bromothymol Blue	Yellow → Blue	6.0 - 7.6
Phenol Red	Yellow → Red	6.8 - 8.4
Phenolphthalein	Colourless → Pink	8.0 - 9.8

 Because it is <u>IMPOSSIBLE</u> to select an indicator that changes at <u>EXACTLY</u> the equivalence point, we choose an indicator that:

→ Changes just past the equivalence point.
 → Changes within the steepest part of the curve.

For the model titrations shown, what would be suitable indicators?

- 1. HCl with NaOH: (equivalence point at pH = 7)
 - Any of bromothymol blue, phenol red, or phenolphthalein
- 2. Acetic acid with NaOH: (equivalence point at pH=8)
 - phenolphthalein
- 3. NH₃ with HCl: (equivalence point at pH = 5.5)
 methyl red, or bromocresol green