

Outcomes:

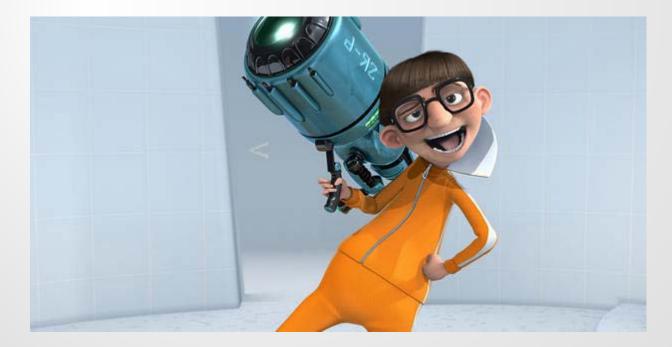
S2-3-01 Analyze the relationship between displacement, time, and velocity for an object in uniform motion.

Physicists have developed a specialized language to describe <u>MOTION</u> as well as a standard set of <u>SYMBOLS</u>, and particular <u>SI</u> units of <u>MEASUREMENT</u>. This way, observations made can be understood by people everywhere.

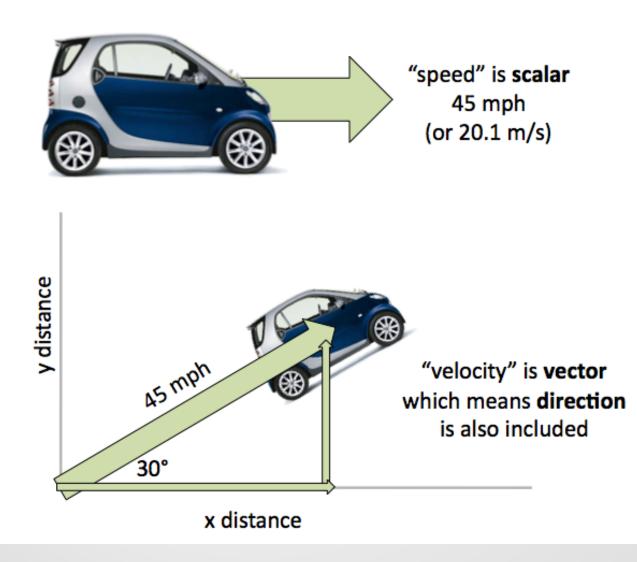
Vocabulary:

1. <u>DELTA (Δ)</u>

- means "<u>CHANGE IN</u>"
 - i.e) FINAL AMOUNT INITIAL amount
- Ex) Δt means change in <u>**TIME**</u> (t₂ t₁)
 - You studied for a science test from 4:00 to 6:00pm


•
$$\Delta t = t_2 - t_1 = 6:00 - 4:00 = 2$$
 hrs

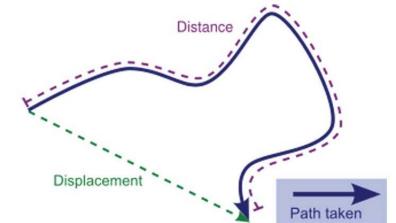
2. <u>SCALAR</u>:


- Quantities that only have a MAGNITUDE (AMOUNT)
- Do **NOT** have **DIRECTION**
- Ex) <u>Time (t)</u>, <u>mass (m)</u>, <u>distance (d)</u>
- i.e. **t = 20s** OR **m = 50kg** OR **d = 20m**

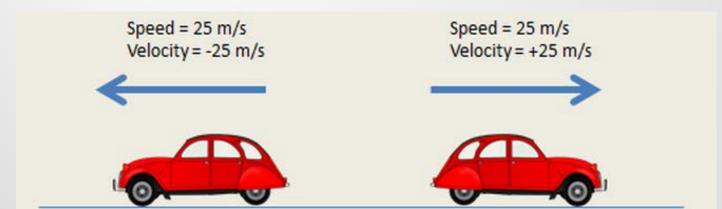
3. <u>VECTOR</u>:

- Quantities that have <u>BOTH MAGNITUDE</u> and <u>DIRECTION</u>.
- **DIRECTION** is usually found in **SQUARE BRACKETS** after the **UNITS**.
- <u>COMPASS</u> points (<u>N,S,E,W</u>) or <u>POSITIVE</u>/<u>NEGATIVE</u> signs are used.
- Usually represented with an **ARROW** over the **SYMBOL**.
- Ex) <u>Displacement (d)</u>, or <u>velocity (v)</u>
 - i.e. **d** = 20m [N] OR **v** = +12km/hr

Scalar and Vector Quantities



4. **POSITION**


- An objects <u>LOCATION</u> in terms of a <u>FRAME</u> of <u>REFERENCE</u>.
- Symbol is <u>d</u>, and units are usually <u>METERS(m</u>)
- An objects starting position is usually <u>d₁ = 0</u> or the <u>ORIGIN</u>.
- <u>VECTOR</u> quantities need <u>DIRECTION</u>:
 - Ex) The accident happened **<u>25km SOUTH</u>** of Winnipeg.

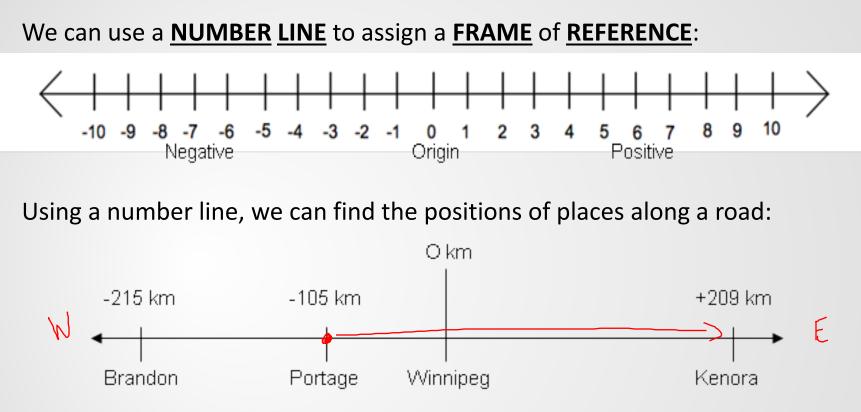
- 5. **DISTANCE** (<u>d</u>)
 - The <u>TOTAL LENGTH</u> of a <u>JOURNEY</u>.
 - Is <u>SCALAR</u>, $\Delta d = d_2 d_1$, where d is in <u>METERS</u> (m)
 - Ex) **100m** race; **26** mile marathon; distance to Brandon and back is **400km**.
- 6. DISPLACEMENT (d)
 - <u>DISTANCE</u> traveled <u>RELATIVE</u> to the <u>ORIGIN</u> (change in <u>POSITION</u>).
 - Is a <u>VECTOR</u>, $\Delta \vec{d} = \vec{d}_2 \vec{d}_1$, where d is in <u>METERS</u> (m).
 - If an object ends up where it <u>STARTED</u>, displacement is <u>ZERO</u>.
 - Ex) the boat drifted 28m west; displacement from Winnipeg to Brandon and back is zero km.

- 7. <u>SPEED</u> (<u>v</u>)
 - The <u>DISTANCE</u> covered in a certain amount of <u>TIME</u> (how <u>FAST</u> an object is going).
 - A <u>SCALAR</u> quantity, with units <u>m/s</u>
 - Ex) **110km/hr, 5m/s**
- 8. <u>VELOCITY</u> (<u>v</u>)
 - The <u>SPEED</u> and <u>DIRECTION</u> of motion. Describes how <u>FAST</u> an objects <u>POSITION</u> is <u>CHANGING</u>.
 - <u>AVERAGE</u> velocity (<u>v</u>_{av}), <u>INSTANTANEOUS</u> velocity (<u>v</u>_{inst})
 - A <u>VECTOR</u> quantity with units <u>m/s</u>
 - Ex) 5 m/s [N], 100km/hr [W]

9. ACCELERATION (a)

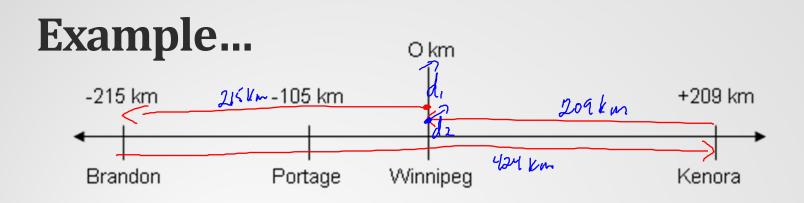
- How quickly an objects <u>VELOCITY</u> is <u>CHANGING</u>.
- <u>AVERAGE</u> acceleration (<u>a_{av}</u>), <u>INSTANTANEOUS</u> acceleration (<u>a_{inst}</u>)
- A <u>VECTOR</u> quantity with units <u>m/s²</u>
- Ex) Earth's gravity:
 - A skydiver accelerates at 9.8m/s² as he falls.

Uniform Motion...


When an object is travelling at a constant speed or velocity it is said to have uniform motion.

 \rightarrow It is not speeding up or slowing down.

In this course, we will always be looking at **LINEAR** motion, where an object is only moving in **ONE DIRECTION** at a time. To describe the position of an object, we will have to use the directions like **POSITIVE** (+), **NEGATIVE** (-), or → Positive (+) means up or to the right $-a|_{50} \notin a_{51} \circ k \quad M_{0} \end{pmatrix}$ → Negative (-) means down or to the left $-a|_{50} \notin b_{10}$ $\delta f = 5 \circ k$ → Compass points: **COMPASS** points:


Position & Displacement...

The **POSITION** of Portage La Prairie is -105 km.

If we drove from Portage to Kenora, we would undergo a change in position, and we can calculate our **DISPLACEMENT** using the formula:


$$\Delta d = d_2 - d_1$$

 $\Delta d = 209 km - (-105 km)$ of 314 km [E]
 $\Delta d = +314 km$

What would be your total **<u>displacement</u>** if you drove from Winnipeg to Brandon, then to Kenora, and back to Winnipeg?

$$d = d_2 - d_1$$

= $\partial km - \partial km$
= ∂km

What would be the **<u>distance</u>** you travelled?

