In Motion

Outcomes:
S2-3-01 Analyze the relationship between displacement, time, and velocity for an object in uniform motion.

The Language of Motion...

Physicists have developed a specialized language to describe MOTION as well as a standard set of SYMBOLS, and particular SI units of MEASUREMENT. This way, observations made can be understood by people everywhere.

Vocabulary:

1. DELTA (Δ)

- means "CHANGE IN"
- i.e) FINAL AMOUNT - INITIAL amount
- Ex) Δt means change in TIME $\left(\mathrm{t}_{2}-\mathrm{t}_{1}\right)$
- You studied for a science test from 4:00 to 6:00pm
- $\Delta t=t_{2}-t_{1}=6: 00-4: 00=2 h r s$

2. SCALAR:

- Quantities that only have a MAGNITUDE (AMOUNT)
- Do NOT have DIRECTION
- Ex) Time (t , mass (m), distance (d)
- ie. $t=20 \mathrm{~s} O R \quad m=50 \mathrm{~kg} O R \quad d=20 \mathrm{~m}$

The Language of Motion...

3. VECTOR:

- Quantities that have BOTH MAGNITUDE and DIRECTION.
- DIRECTION is usually found in SQUARE BRACKETS after the UNITS.
- COMPASS points ($\mathbf{N}, \mathbf{S}, \mathbf{E}, \mathbf{W}$) or POSITIVE/NEGATIVE signs are used.
- Usually represented with an ARROW over the SYMBOL.
- Ex) Displacement (d), or velocity (v)
- i.e. $\vec{d}=20 \mathrm{~m}[\mathrm{~N}] \quad O R \vec{v}=+\mathbf{1 2 k m} / \mathrm{hr}$

The Language of Motion...

Scalar and Vector Quantities

The Language of Motion...

4. POSITION

- An objects LOCATION in terms of a FRAME of REFERENCE.
- Symbol is $\underline{\mathbf{d}}$, and units are usually METERS($\underline{\mathbf{m}}$)
- An objects starting position is usually $\underline{\mathbf{d}}_{\underline{1}}=\mathbf{0}$ or the ORIGIN.
- VECTOR quantities need DIRECTION:
- Ex) The accident happened 25km SOUTH of Winnipeg.

The Language of Motion...

5. DISTANCE (d)

- The TOTAL LENGTH of a JOURNEY.
- Is SCALAR, $\underline{\Delta d=d_{2}-d_{1}}$, where d is in METERS (\underline{m})
- Ex) 100m race; 26 mile marathon; distance to Brandon and back is 400km.

6. DISPLACEMENT ($\overrightarrow{\mathbf{d}})$

- DISTANCE traveled RELATIVE to the ORIGIN (change in POSITION).
- Is a VECTOR, $\underline{\Delta \mathrm{d}}=\overrightarrow{\mathrm{d}}_{\underline{2}}-\overrightarrow{\mathrm{d}}_{\underline{1}}$, where d is in METERS (m).
- If an object ends up where it STARTED, displacement is ZERO.
- Ex) the boat drifted 28m west; displacement from Winnipeg to Brandon and back is zero km.

The Language of Motion...

7. SPEED (́)

- The DISTANCE covered in a certain amount of TIME (how FAST an object is going).
- A SCALAR quantity, with units $\underline{m} / \mathbf{s}$
- Ex) $110 \mathrm{~km} / \mathrm{hr}, 5 \mathrm{~m} / \mathrm{s}$

8. VELOCITY (ㅢ)

- The SPEED and DIRECTION of motion. Describes how FAST an objects POSITION is CHANGING.
- AVERAGE velocity ($\mathbf{v}_{\text {av }}$), INSTANTANEOUS velocity ($\underline{\mathrm{v}}_{\text {inst }}$)
- A VECTOR quantity with units \mathbf{m} / s
- Ex) $5 \mathrm{~m} / \mathrm{s}$ [N], 100km/hr [W]

$$
\begin{aligned}
& \text { Speed }=25 \mathrm{~m} / \mathrm{s} \\
& \text { Velocity }=-25 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

```
Speed =25 m/s
Velocity=+25 m/s
```


The Language of Motion...

9. ACCELERATION (a)

- How quickly an objects VELOCITY is CHANGING.
- AVERAGE acceleration ($\left.\underline{\mathrm{a}}_{\underline{a v}}\right)$, INSTANTANEOUS acceleration ($\underline{\mathrm{a}}_{\underline{\mathrm{inst}}}$)
- A VECTOR quantity with units $\underline{m} / \mathbf{s}^{2}$
- Ex) Earth's gravity:
- A skydiver accelerates at $9.8 \mathrm{~m} / \mathrm{s}^{2}$ as he falls.

Uniform Motion...
When an object is travelling at a constant speed or velocity it is said to have uniform motion.
\rightarrow It is not speeding up or slowing down.

In this course, we will always be looking at LINEAR motion, where an object is only moving in ONE DIRECTION at a time. To describe the position of an object, we will have to use the directions like POSITIVE (+),NEGATIVE (-), or COMPASS points:
\rightarrow Positive (+) means up or to the right -also East, or North
\rightarrow Negative (-) means down or to the left - abs west or South
\rightarrow Compass points:

Position \& Displacement...

We can use a NUMBER LINE to assign a FRAME of REFERENCE:

Using a number line, we can find the positions of places along a road:

The POSITION of Portage La Prairie is -105 km .
If we drove from Portage to Kenora, we would undergo a change in position, and we can calculate our DISPLACEMENT using the formula:

$$
\begin{aligned}
& \Delta d=d_{2}-\left(\begin{array}{l}
\text { d }
\end{array}\right. \\
& \Delta d=209 \mathrm{~km}-(-105 \mathrm{~km}) \quad \text { on } 314 \mathrm{~km}[E] \\
& \Delta d=+314 \mathrm{~km}
\end{aligned}
$$

Example...

What would be your total displacement if you drove from Winnipeg to Brandon, then to Kenora, and back to Winnipeg?

$$
\begin{aligned}
\vec{d} & =\overrightarrow{d_{2}}-\overrightarrow{d_{1}} \\
& =\varnothing \mathrm{km}-\not \mathrm{km} \\
& =\varnothing \mathrm{km}
\end{aligned}
$$

What would be the distance you travelled?

$$
\begin{aligned}
& \text { be the distance you travelled? } \\
& \text { distance }=215 \mathrm{~km}+424 \mathrm{~km}+209 \mathrm{~km}
\end{aligned}
$$

