Definitions of Acids & Bases

Outcomes:

- Outline the historical development of acid-base theories. Include: Arrhenius, Lowry-Bronsted, Lewis.
- Write acid/base chemical equations. Include conjugate pairs, amphoteric behaviour.

Arrhenius Definition:

<u>Acids:</u>

An acid is a substance that releases H⁺ ions in water.

Ex)
$$HCl_{(aq)} \rightarrow H^+_{(aq)} + Cl_{(aq)}$$

Bases :

• A base is a substance that releases OH⁻ ions in water.

Ex) NaOH_(aq)
$$\rightarrow$$
 Na⁺_(aq) + OH⁻_(aq)
1420 + NH_{3(aq)} \rightarrow NH₄⁺_(aq) + OH⁻_(aq)

Problems With Arrhenius' Definition:

- Arrhenius' definition says that acids and bases can only
 OCCUR in WATER SOLUTIONS.
- However, <u>HCI</u> reacts with <u>NH₃</u> in the <u>GAS</u> <u>PHASE</u>.
- This means that, as a GAS, HCI is an ACID, and NH₃ is a BASE.
- There are also many substances that are <u>ACIDIC</u> or <u>BASIC</u>, but do not have a <u>H⁺</u> ion or a <u>OH⁻</u> ion. Na +C03
- For Example:
 - <u>BAKING SODA</u> (*NaHCO₃*) turns <u>RED</u> litmus <u>BLUE</u>, but has no apparent <u>OH</u>⁻ ion.
 - METAL ions, (Fe³⁺, Al³⁺) turn <u>BLUE</u> litmus <u>RED</u>, but have no <u>H⁺</u> ions.
- Arrhenius' definition does not account for these.

Lowry-Bronsted Theory:

Thomas Lowry and Johannes Bronsted developed a more general definition of acids and bases

They said:

An acid is a proton (H⁺) donor, and a base is a proton acceptor.

For example:

HCl reacts with water by **DONATING** a **PROTON**. Water acts as the base, **ACCEPTING** the **PROTON**. The result is the H_3O^+ ion called the **HYDRONIUM ION**.

Lowry-Bronsted Theory:

<u>AMMONIA ACCEPTS</u> a <u>PROTON</u> from <u>WATER</u>, making <u>AMMONIA</u> a <u>BASE</u> and <u>WATER</u> the <u>ACID</u>. The result is the <u>AMMONIUM ION</u> and the <u>HYDROXIDE ION</u>.

Lowry-Bronsted Theory:

A couple of important points:

- <u>ACIDS</u> do not "<u>DONATE</u>" protons <u>WILLINGLY</u>, <u>BASES</u> actually "<u>STEAL</u>" the <u>PROTON</u> away by <u>BREAKING</u> bonds in the <u>ACID</u>.
- Some substances (like water) can act as <u>BOTH</u> acids and bases. They are called <u>AMPHOTERIC</u>.
- ALL ARRHENIUS acids/bases are LOWRY-BRONSTED acids/bases, but NOT ALL LOWRY-BRONSTED acids/bases are ARRHENIUS acids/bases.

Problem with the Lowry-Bronsted Definition:

 Some compounds like Boron trifluoride exhibits acidic behaviour, but does not donate or accept protons.

Lewis Model of Acids and Bases:

Gilbert Lewis proposed a new definition in the 1920's

He said:

• An acid accepts an electron pair, and a base donates an electron pair during a reaction.

The <u>BCl₃</u> acts as the Lewis <u>ACID</u> (<u>ACCEPTS</u> an <u>e⁻ pair</u>), and the <u>Cl⁻</u> acts as a Lewis <u>BASE</u> (<u>DONATES</u> an <u>e⁻ pair</u>).

Lewis Model of Acids and Bases:

<u>BORON</u> has an <u>EMPTY SPACE</u> for an <u>ELECTRON PAIR</u>, so it will <u>ACCEPT</u> the pair from <u>AMMONIA</u>. Therefore <u>BF₃</u> is a Lewis <u>ACID</u> and <u>AMMONIA</u> is a Lewis <u>BASE</u>.

Try these ones:

Identify the following reactants as a Lewis acid or a Lewis base:

a) $H^+ + OH^- \rightarrow H_2O$ H⁺ + [:0:] Acid H BASE b) $H^+ + H_2O \rightarrow H_3O^+$ H⁺ + H;O: Acid H Base c) $AICI_3 + CI^- \rightarrow AICI_4^-$ ナ