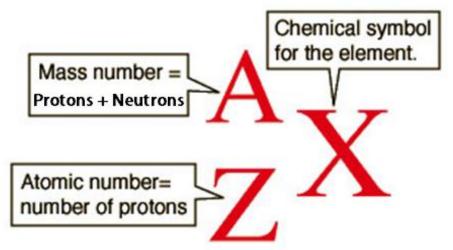
Atomic Mass & Isotopes

https://www.pastemagazine.com/blogs/lists/2014/07/the-100-greatest-simpsons-guest-stars.html?p=6


Outcome:

Determine average atomic mass using isotopes and their relative abundance. *Include: Atomic mass unit (amu)*

Periodic Table Review

Recall from Senior 1:

- → Atomic number = number of **PROTONS**
- → Atomic mass = number of **PROTONS** + number of **NEUTRONS**
- → Elements are usually denoted as follows:

http://hyperphysics.phy-astr.gsu.edu/hbase/nuclear/nucnot.html

More about atoms...

Protons Identify the element

The number of protons **CANNOT** change without changing the **ELEMENT**.

ie. If an atom has 6 protons, it MUST be carbon

In Neutral Atoms Electrons = Protons

The number of electrons **CAN** change, but it forms an **ION**.

Neutrons Stabilize the Nucleus

Neutrons are **NEUTRAL** and simply keep protons from **REPELLING** each other.

Isotopes:

- Isotopes are atoms of the same **ELEMENT** (same # of **PROTONS**), with different numbers of **NEUTRONS**.
- Neutrons <u>STABILIZE</u> the nucleus, which can be done in different <u>ARRANGEMENTS</u>.
- They have the same <u>ATOMIC</u> number, but different <u>MASSES</u>
- The <u>AVERAGE</u> mass of an isotope for an element is a <u>PROPERTY</u> of that element.
- Isotopes are usually represented as <u>SODIUM-24</u> or ²⁴Na

Example:

Hydrogen has 3 naturally occurring isotopes:

H 2H 3H

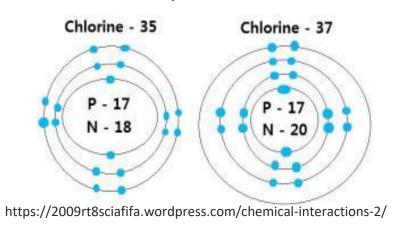
Protium Deuterium Tritium

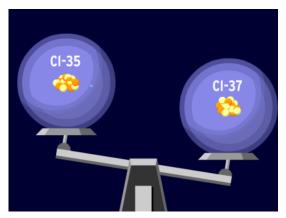
Hydrogen Isotopes Analogy

https://en.wikipedia.org/wiki/Isotopes_of_hydrogen

Atomic Mass

Atomic Mass Unit (amu, u, or μ):


- Is 1/12th the mass of a **C-12** atom.
- The reasons for using the <u>C-12</u> isotope:
 - It is very <u>COMMON</u>
 - It results in nearly <u>WHOLE</u> number <u>MASSES</u> for most other elements
 - It gives <u>HYDROGEN</u> (lightest element) a mass of nearly <u>1AMU</u>
- It is extremely small! 1amu = 1.66x10⁻²⁷kg


Average Atomic Mass:

 Most elements have isotopes, meaning that there are atoms of the same element with different MASS.

Example:

Chlorine has two common isotopes: *Chlorine-35* and *Chlorine-37*.

- Any <u>SAMPLE</u> of chlorine atoms will have atoms of <u>BOTH</u> <u>ISOTOPES</u>.
- For most elements the <u>AMOUNTS</u> of each <u>ISOTOPE</u> in any <u>SAMPLE</u> is <u>CONSTANT</u>.
- Because the composition is constant, we can use an <u>AVERAGE MASS</u> for chlorine, taking the amount
 of each isotope into account.
- This percentage is called <u>RELATIVE</u> <u>ABUNDANCE</u>.

A sample of chlorine has 75% chlorine-35, and 25% chlorine-37.

• The average mass of CI should be between 35 and 37amu (but closer to 35)

How do we calculate average mass?

You need to know the **RELATIVE ABUNDANCE** of all isotopes.

Isotope	Abundance (%)
Silicon-28	92.23
Silicon-29	4.67
Silicon-30	3.10

Next, MULTIPLY the MASS of each isotope with its ABUNDANCE. (this WEIGHTS each isotope)

• Note: Use the exact mass of each isotope if given.

Finally, ADD the WEIGHTED MASSES to get the average atomic mass.

Try these ones...

Given the information below, find the average atomic mass of elemental Magnesium.

Isotope	% Natural Abundance
Magnesium-24	78.70
Magnesium-25	10.13
Magnesium-26	11.17

$$24 \times \frac{78.70}{100} = 18.89$$

$$24 \times \frac{10.13}{100} = 2.53$$

$$26 \times \frac{11.17}{100} = 2.90$$

$$24.32 \text{ M}$$

Try these ones...

Elemental Boron is a combination of two naturally occurring isotopes: Boron-10 has a relative abundance of 19.78%, and boron-11 has a relative abundance of 80.22%.

$$10 \times \frac{19.78}{100} = 1.98$$

$$11 \times \frac{80.22}{100} = 8.82$$

$$10.8 \text{ amu}$$